The generator matrix

 1  0  1  1  1  1 X+3  1  1  1 2X  1  1  0  1  1  X  1  3 2X+3  1  1  1  1  1  1 2X  X  1  1  1  1 2X+3  1  1  3  3  0  1  1  1
 0  1  1  8 X+3 X+2  1 2X+4 2X 2X+8  1 X+1  0  1 2X 2X+1  1 X+8  1  1 X+4  1  2 X+3 X+8 2X+2  1  1  2 2X+2  5 X+5  1 X+3 2X+2  1  1  1 2X+3 X+6 X+2
 0  0 2X  0  3  3  3 2X+3  0  3  3 2X 2X+6 2X 2X+6  X X+3 X+3 X+3 X+6  X X+6 X+3 2X+3 X+6 X+3 2X+3 X+6 X+6 X+3  6  3 X+3 2X+6  3 X+3 2X+3  0 X+6  0 2X+3
 0  0  0  6  6  0  3  3  3  3  6  6  3  6  0  3  3  6  6  0  0  6  3  6  0  6  6  0  0  3  0  3  6  3  0  3  3  6  3  0  3

generates a code of length 41 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 75.

Homogenous weight enumerator: w(x)=1x^0+260x^75+216x^76+1086x^77+1328x^78+792x^79+1626x^80+3694x^81+1308x^82+2748x^83+3560x^84+972x^85+1236x^86+498x^87+90x^88+48x^89+86x^90+24x^91+42x^92+44x^93+18x^95+2x^96+2x^105+2x^108

The gray image is a code over GF(3) with n=369, k=9 and d=225.
This code was found by Heurico 1.16 in 4.47 seconds.